二重根号
♪♥ この教材は,高校数学の基本問題のうち,二重根号のバックアップファイルです.
♫♣ 元の教材が機器や通信トラブルで読めないときに,こちらを使ってください.なお,学習の記録は付いていません.
【単元の目次】
《数学Ⅰ》
数と式根号計算場合の数.順列.組合せ2次不等式
== 二重根号 ==
○ 中学校で学んだように,a, x>0 のとき
ならば
が成り立ちます.
【例1】
だから

○ xとして根号を含む例を考えると,次の関係が成り立ちます.
だから
だから

○一般に
a,b>0 のとき,
だから
a>b>0 のとき,
だから
が成り立つ.

[二重根号をはずすための基本公式]
(1) a,b>0 のとき,

和がa+b,積がabなる2数 a,b を見つけると

と変形できる.
(2) a>b>0のとき,

和がa+b,積がabなる2数 a,b を見つけると

と変形できる.

※根号内にマイナス記号がある方の二重根号を外す場合は,a, bのうちの大きい方を前にして引き算をしないとが正の数にならないことに注意
例えば


のように2乗はいずれも等しいが


のように,小さい根号が左にある方は符号が逆のものを表している.


※上の公式は (A+B)2=(A2+B2)+2AB の展開公式を用いて,

もしくは,

とおいて

とするものなので,2がなければ二重根号ははずれない.この 2 は二重根号をはずすために絶対必要な前提となるものなので,この頁では以下 2 のことを「金」に例えて解説する. 
※この頁では二重根号になっている式を変形して一重根号にすることを平凡な日常用語で「二重根号をはずす」と表現していますが,書物によっては二重根号の簡約とか,二重根号を解くと書かれていることもあります.
右上に続く↑

[1] 2はお金のように大切
【例2】

の二重根号をはずすには
(解答)
○初めに内側の根号の前に 2 が付いていることを確かめる.この前提が満たされていないと,そもそも二重根号ははずれない.
○和が 8,積が 7 となる2数を求める ⇒ 7 と 1
○直ちに二重根号がはずれる

 形を整えて答

【例3】

の二重根号をはずすには
(解答)
○初めに内側の根号の前に 2 が付いていることを確かめる.この前提が満たされていないと,そもそも二重根号ははずれない.
○和が 7,積が 12 となる2数を求める ⇒ 4 と 3(4 >3だから4を前に持っていく)
○直ちに二重根号がはずれる

 形を整えて答

【問題1】 次の二重根号を外してください.各々正しいものを下の選択肢から選んでください.(クリックする)




【問題2】 次の二重根号を外してください.各々正しいものを下の選択肢から選んでください.(クリックする)
(1)

(2)

[2] 金がないなら貯金から出す
(マイナスのときは,の公式を使うためには,内側にある根号の前に「必ず2」がなければなりません.
次のイメージで考える
(1) 金(2)がある⇒はずせる:
(2) 金(2)がない⇒はずせない:
(3)
貯金の中に22=4があれば前に出す

【内側の根号から貯金を引き出すには】

の公式を使います.中で2枚のものが外に出たら1枚になる


3枚あるときは2枚だけ引き出します

【例3】

の二重根号をはずすには
(解答)
○内側の根号の前に金(2)がない→貯金(60)から引き出す



【問題3】 次の二重根号を外してください.各々正しいものを下の選択肢から選んでください.(クリックする)
(1)

(2)

(3)

(4)

右上に続く↑

[3] 金余りなら貯金に入れる
 (マイナスのときは,
の公式を使うためには,内側にある根号の前に「必ず2」がなければなりません.
 多ければよいというものでもなく,必ず2でなければならないので,余計なものがあっても困る.そこで,余った「金」は貯金します.
【金余り→貯金する】

【2以外→貯金する, 2→貯金から出す】




【問題4】 次の二重根号を外してください.各々正しいものを下の選択肢から選んでください.(クリックする)
(1)

(2)

(3)

(4)

[4] 金がなくて貯金もないときは母に借りる
 (マイナスのときは,
の公式を使うためには,内側にある根号の前に「必ず2」がなければなりません.
 ここまで登場した例では,金(2)がない場合に貯金がありましたが,金もなく貯金もない場合にはどうすればよいのかを考えます.

のように,金(2)もなく貯金(内側の根号の中に4)もない場合は,正しい変形になるように気をつけながら金(2)を作ります.
それは分母と分子の両方に2を掛けるということです.


二重根号をはずすという問題は難しいのですが,分母の有理化という問題は比較的簡単なので後で何とかするとして,とりあえず分子の二重根号をはずす問題に専念します.
二重根号がはずれたら,分母を有理化すれば出来上がりです.

※赤で示した式の変形において,分子のに勝手に2を掛けると式が変わってしまって等しい変形とはなりません.そこで,分母にも分子にも2を掛けて正しい変形となるようにするのがミソです.
 それはたとえ話で言えば「母親に無理をお願いして2だけ持ってもらう」「母に借りる」と言えば分かりやすいでしょう.
【金もなく貯金もない→母に借りる】
他の例:


右上に続く↑

【問題5】 次の二重根号を外してください.各々正しいものを下の選択肢から選んでください.(クリックする)
(1)

(2)

(3)

■備考■(余裕がある人だけ,読んでください.「困難するかも」という人は,読まなくてもよい)
[1]二重根号ははずれない方が多い

二重根号の問題がそこそこできるようになると「二重根号は,必ずはずせるんだ」と考えるかもしれませんが,それは正しくありません.
 生徒が出合う問題は「解ける問題」「はずせる問題」だけで,はずせない問題に触れる機会が少なく,「必ずはずれるんだ」という錯覚を持ってしまうのかもしれません.
 説明のために,

の形の二重根号でが無理数になるものだけを考え,これが

の形の(一重)根号になるかどうか調べてみる.
 が無理数という条件を付けないと,少し複雑になります.
 例えば,は二重根号のように見えていますが,内側の根号内が平方数なのでになります.
 同様にして,の形をしたものは見かけは二重でも実質は二重根号ではありません.このようなものはここでは考えないことにします.…(##)
 和がで積がとなる2数は,2次方程式
…(1)
の解になっているので,そもそも実数解を条件

すなわち
…(2)
を満たしていなければなりません.以下,この実数条件(2)を満たしているものだけを扱うと,の範囲で二重根号が外れるのは次の組合せだけです.
-- 表1 --
3456677788899991010
23658610127121581418202124
の範囲で二重根号が外れるの値を図示すれば次の丸印になります.(赤で示したのは実数条件の限界を表す放物線)
-- 図1 --
○1 これらの整数点は図1のように何本かの直線上に並びます.
 黒で示した横線は上の(##)で述べたが平方数で元の式がそもそも二重根号とは言えないことを表しています.
 青の斜め線はの直線になります.
 緑の斜め線はの直線になります.
 オレンジの斜め線はの直線になります.
一般に,各々のに対して,低い方から番目の点はの直線上にあり,まで本の直線が通っています.

○2 上の表1においての場合を例にとって解説する.


となるの値が幾つあるか調べるには,
1) とおくと,
このとき

となる.
2) とおくと,
このとき

となる.
3) とおくと,
となってが平方数になります.
*) のときは上記の解の順序を入れ換えたものになります.

このようにのときはになれるから2組になります.
このページの内容について,質問や間違いの指摘があるときは,下の「コメントを投稿」という文字をクリックしてください(↓↓)
の場合
 次の表で背景色が水色の組は二重根号がはずれ,赤字で示したのはbが平方数になっているもの.
a666
b589

 同様にして,のとき




のうちで下2個が平方数になっているので,運悪く二重根号がはずれるのは2組だけになります.
a1010101010
b916212425
 のように運よく多くの二重根号がはずれるものもありますが,のように運悪くの多くが平方数になってしまうものもあります.
 最も運がよい場合でも1つの値に対して,二重根号がはずれるの値は

すなわち

個です.
 
 個(実際には2個)
 個(実際には7個)
などとなり,の値が大きくなるほど(実数条件を満たすもののうちで)二重根号がはずれる確率は低くなります.
○3 図1において横の座標が偶数で実数条件の境界線上の点から出ている接線になっています.すなわち,これらの直線はが偶数であるときに新たに追加される接線から成っています.

だから,接線の方程式は


[2]二重根号がはずれない例

の場合
 次の表で背景色が水色の組は二重根号がはずれ,水色になっているものははずれないもの,赤字で示したのはbが平方数になっているものです.
a666666666
b123456789

例えば

の二重根号をはずそうとすると,和が6で積が2となる2数を探すことになるので,解と係数の関係から

の2つの解

を用いて


となります.さらに,この

を2次方程式

の2つの解を用いて求めようとすると

が登場して,堂々巡りになり,結局はずれません.

なども同様にして堂々巡りになり,はずれません.
[3]二重根号は,現在高校の教科書では扱われていない

 読者のやる気に水を注すような発言で申し訳ないのですが,この頁で取り上げた二重根号をはずす問題は「整数問題の処理」「論理的思考」の訓練にはなりますが,日常生活とのかかわりとなると非常に薄いものです.
 社会生活で実際に扱うデータは小数であることも多く,さらには二重根号,三重根号,3乗根,...12乗根など何でもありですが,それらはコンピュータで瞬時に処理できます.この頁で扱った「筆算だけで二重根号をはずす技術」というのは,日常生活ではほとんど出合わないと考えられます.
求めたいもの筆算Excel
できない=SQRT(8+2*SQRT(3))
=3.385867926
できない=SQRT(3+SQRT(3+SQRT(3)))
=2.274934669
できない=(5+6^(1/3))^(1/3)
=1.896125122

※このような訳で,二重根号のはずし方という問題は,現在のもしくは近未来の重点項目ではないと考えられますが「読者からの質問が多い」ので教材を置いています.

コメント